
PHYSICAL REVIEW E, VOLUME 64, 013401
Comment on ‘‘Long-range electrostatic interactions between like-charged colloids:
Steric and confinement effects’’
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In a recent study@Phys. Rev. E60, 6530 ~1999!#, Trizac and Raimbault showed that the effective pair
interaction between like-charged colloids immersed in a cylindrically confined electrolyte remains repulsive
even when the size of the microions and the finite longitudinal extension of the confining cylinder are taken
into account. Contrary to their claim, we argue that the case of finite longitudinal confinement does not always
generate repulsive interactions and to illustrate this point we also provide a simple example.
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There have been a number of recent theoretical eff
toward understanding the mechanism behind the long-ra
attraction that is experimentally observed@1–5# when like-
charged colloids are immersed in a confined electrolyte.
fact that this interaction returns to a purely repulsive one
soon as the confining surface is removed@4,6# suggested tha
the attractive part could be obtained within the framework
the Poisson-Boltzmann theory by properly taking into a
count the influence of the confining surface. However, N
@8# and Sader and Chan@9#, using a general model of cylin
drical confinement, have rigorously proved that this is n
the case.

In their paper, Trizac and Raimbault@7# extended the
aforementioned studies@8,9# to include the influence brough
upon the sign of the interaction by the size of the microio
and the finite longitudinal extension of the confining cylind
~case hereafter referred to as complete confinement!. Al-
though we agree with their conclusion that the interact
remains repulsive when the specific size of the microion
taken into account through a modified Poisson-Boltzma
equation, we do not agree with a similar conclusion for
case of complete confinement. In this Comment, we sh
that this disagreement is brought about by an inaccurac
their calculation and that, in general, colloids immersed i
completely confined electrolyte do not always repel. We a
provide a simple example to illustrate this point.

To be more specific, the issue has to do with the use
Green’s theorem in two dimensions~2D!. If W is a closed
domain inR2 ~for example in thexy plane! andf(x,y) and
c(x,y) are scalar fields defined onR2, then Green’s theorem
in 2D is

E
W

dxdy@~“xyf!•~“xyc!1f¹xy
2 c#5 R

]W
dl f~ n̂•“xyc!,

~1!

wheren̂ ~which is contained in thexy plane! represents the
outer unit normal to the boundary]W of W and“xy is the
2D gradient operator.

With this in mind and making use of the same notati
and assumptions as in@7#, we obtain a different expressio
for Eqs.~14! and ~15! in that paper, where Green’s theore
was inaccurately applied. For clarity, let us first separate
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z component of the gradient in the equation that genera
the results (14) and (15) in@7#:

E
Oxy

dxdy Ez5L•~Dz502Dz5L!

5E
Oxy

dxdy~2“c!z5L•@e~2“c!z502e~2“c!z5L#

5E
Oxy

dxdyH e~2“xyc!z5L•@2~“xyc!z50

1~“xyc!z5L#2eS ]c

]z D
z5L

2 J , ~2!

where“ is the 3D gradient operator andc possesses mirro
symmetry with respect to the planez50, as in @7#. The
reader should remember that the notation*Oxy actually
stands for the two integrals over the domains of thexy plane
that are interior and exterior, respectively, to the confin
cylinder. The dimensionality of these integrals requires
use of the 2D version of Green’s theorem; inaccurately in@7#
the 3D version was employed instead. This issue is clari
if we consider the more explicit representation shown in E
~2!, where we can correctly apply the 2D version of Gree
theorem@as stated in Eq.~1!# to get

E
]S

dl ~Dn2Dn8!z5L~2cz501cz5L!

2E
Oxy

dxdyF e~¹xy
2 c!z5L~cz502cz5L!1eS ]c

]z D
z5L

2 G
5sE

S
dSEz2E

Oxy
dxdyF ~cz502cz5L!

]P

]c
~cz5L!

2~cz502cz5L!eS ]2c

]z2 D
z5L

1e~Ez!z5L
2 G , ~3!

where in going from the left- to the right-hand side we us
the dielectric boundary conditionDn82Dn5s @and the fact
©2001 The American Physical Society01-1
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that *]Sdl (cz502cz5L)5*SdS Ez] and also formed the
3D Laplacian and employed Eq.~10! in @7#.

In fact, the left- and right-hand sides of Eq.~3! are the
correct forms for Eqs.~14! and ~15!, respectively, in@7#.
After adding all the terms, the correct expression for thz
component of the force@Eq. ~16! in @7## should read

Fz5E
Oxy

dxdyFP~cz50!2P~cz5L!2~cz502cz5L!

3
]P

]c
~cz5L!G1E

Oxy
dxdy

e

2
~Ez502Ez5L!2

1E
Oxy

dxdy~cz502cz5L!eS ]2c

]z2 D
z5L

. ~4!

Although one can use the same argument as in@7# to
prove that the first two integrals in Eq.~4! are always posi-
tive, the third one~which is different from that obtained b
Trizac and Raimbault! can in fact be negative and sometim
overcome the first two. Before we show how this can h
pen, let us mention another equivalent expression forFz ,
which can be obtained by recasting in a different manner
second integrand of Eq.~13! in @7#, namely, (D•E)z50
2(D•E)z5L52e(Ez502Ez5L)222Ez50•(Dz5L2Dz50),
and then following the same steps used in deriving Eq.~4!:

Fz52E
Oxy

dxdyFP~cz5L!2P~cz50!2~cz5L2cz50!

3
]P

]c
~cz50!G2E

Oxy
dxdy

e

2
~Ez502Ez5L!2

1E
Oxy

dxdye~Ez!z5L
2 2E

Oxy
dxdy~cz5L2cz50!

3eS ]2c

]z2 D
z50

. ~5!

The reader can easily check that Eqs.~4! and~5! are equiva-
lent, by subtracting them from one another and then us
Eq. ~10! in @7#, Green’s theorem in 2D, and the dielectr
boundary condition to prove that the result is zero.

We can now propose a simple example in order to pr
that complete confinement does not always generate re
sive interactions. As before, we assume that the particles
immersed in an electrolyte of permittivitye, confined by an
infinite and uniformly charged cylindrical surface~of arbi-
trary cross section!, while the medium outside the cylinde
has a permittivitye8 and also contains an electrolyte~most
general case!. The only requirement is thatc possesses mir
ror symmetry with respect to the planez50. In our example
the particlesS1 andS2 are taken to be flat surfaces with th
same surface charge densitys as the confining cylinder
while the microions are able to equilibrate at all times~by
being in contact with a reservoir and possibly permeat
through the colloidal particles!. The wallsA andB that real-
ize the complete confinement are surrounded on both s
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by electrolyte and also have the same uniform surface ch
densitys as the confining cylinder~in this way the complete
confinement is realized by a surface of constants). To com-
pute thez component of the force on the colloidS2, we
follow the same procedure outlined in@7#, only that instead
of choosing the surfaceSL to integrate over in Eq.~11! that
definesFz in @7#, we choose the surfaceSd , midway be-
tween the colloidS2 and the wallB ~see Fig. 1!. Keeping in
mind the correction made in this Comment, the result e
up identical to Eq.~5!, with the only exception that all the
indicesz5L are replaced byz5d:

Fz52E
Oxy

dxdyFP~cz5d!2P~cz50!2~cz5d2cz50!

3
]P

]c
~cz50!G2E

Oxy
dxdy

e

2
~Ez502Ez5d!2

1E
Oxy

dxdye~Ez!z5d
2 2E

Oxy
dxdy~cz5d2cz50!

3eS ]2c

]z2 D
z50

. ~6!

It is easy to see that the last two integrals in Eq.~6!
approach zero as the separation 2L between the walls is in-
creased to infinity and the distance 2(L2d) between each
particle and the adjacent wall is kept constant. Indeed, in
situation,c becomes symmetric with respect to the planez
5d ~due to our choice for the shape of the colloidal partic!
and therefore (Ez)z5d→0, while atz50 ~infinitely far away
from the particles and the walls! the problem of solving forc
becomes essentially a 2D one~independent ofz) and there-
fore ]nc/]zn→0 for anyn>1. At the same time, as argue
in @7#, the first two integrals in Eq.~6! are always positive
@the first integrand is positive due to the global convexity
P(c)# and, moreover, reach some finite asymptotic value
this limiting case. Since both integrals contribute with a m
nus sign in Eq.~6!, it becomes clear thatFz,0 when L
→` andL2d is constant.

FIG. 1. Longitudinal section along the confining cylinder sho
ing the two particlesS1 andS2 and the wallsA andB responsible
for the complete confinement. The planez5d is midway between
the particleS2 and the wallB.
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Therefore, within the approximations of our example,
conclude that, for any fixed distance 2(L2d) between the
colloidal particle and the adjacent wall, there is a fini
maximum separation between the walls 2L0, at which the
particles are in equilibrium (Fz50) and beyond whichFz
becomes negative and remains so asL increases. Although
this is in contradiction with the result obtained earlier
Trizac and Raimbault@7# that Fz should always be positive
under complete confinement, we have shown that the con
versy stems from an inaccuracy in their calculation. It
therefore possible that completely confined colloidal p
ticles do not always repel, mainly due to the stronger int
ra
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action with the walls~or conceivably other particles@10#!
that are responsible for the finite longitudinal confineme
and break the translational symmetry of the confined spa
Although this type of calculation is not suitable to yield a
estimate onL0, it would nevertheless be of great interest
this could be done through computer simulations.
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