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Comment on “Long-range electrostatic interactions between like-charged colloids:
Steric and confinement effects”
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In a recent studyPhys. Rev. E60, 6530 (1999], Trizac and Raimbault showed that the effective pair
interaction between like-charged colloids immersed in a cylindrically confined electrolyte remains repulsive
even when the size of the microions and the finite longitudinal extension of the confining cylinder are taken
into account. Contrary to their claim, we argue that the case of finite longitudinal confinement does not always
generate repulsive interactions and to illustrate this point we also provide a simple example.
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There have been a number of recent theoretical effortg component of the gradient in the equation that generates
toward understanding the mechanism behind the long-rangde results (14) and (15) ifv]:
attraction that is experimentally observgtd-5] when like-
charged colloids are immersed in a confined electrolyte. The
fact that this interaction returns to a purely repulsive one as j dxdy E,— - (Dz—0—D,=1)
soon as the confining surface is remoyédd| suggested that i
the attractive part could be obtained within the framework of
the Poisson-Boltzmann theory by properly taking into ac- ZJ AXdW =V i) ,— - [e(=Vh) 1m0~ (= Vih) =]
count the influence of the confining surface. However, Neu Oxy

[8] and Sader and Chd®], using a general model of cylin-
drical confinement, have rigorously proved that this is not = dxdy[ (= Viyth) =1 [ = (Viyih) =0
the case. Oxy
In their paper, Trizac and Raimbadl?] extended the a2
aforementioned studi¢8,9] to include the influence brought (Vg = 1— 5(5) } , 2
upon the sign of the interaction by the size of the microions z=L

and the finite longitudinal extension of the confining cylinder

(case hereafter referred to as complete confinemexit  whereV is the 3D gradient operator ankpossesses mirror

though we agree with their conclusion that the interactiorsymmetry with respect to the plare=0, as in[7]. The

remains repulsive when the specific size of the microions iseader should remember that the notatifg,, actually

taken into account through a modified Poisson-Boltzmanrstands for the two integrals over the domains ofxlgeglane

equation, we do not agree with a similar conclusion for thethat are interior and exterior, respectively, to the confining

case of complete confinement. In this Comment, we showeylinder. The dimensionality of these integrals requires the

that this disagreement is brought about by an inaccuracy inse of the 2D version of Green’s theorem; inaccurately’in

their calculation and that, in general, colloids immersed in a&he 3D version was employed instead. This issue is clarified

completely confined electrolyte do not always repel. We alsdf we consider the more explicit representation shown in Eq.

provide a simple example to illustrate this point. (2), where we can correctly apply the 2D version of Green'’s
To be more specific, the issue has to do with the use ofheorem|as stated in Eq(1)] to get

Green’s theorem in two dimensiori@D). If W is a closed

domain inR? (for example in thexy plang and ¢(x,y) and

¥(x,y) are scalar fields defined &7, then Green’s theorem de/(Dn— Dp)o=t(— ¢z=0t ¥=1)

in 2D is

J 2
2 oA _j dXdY{G(V§Y¢)Z—L(¢Z—O_¢Z_L)+e(a—lzﬂ) }
deXdy{(nyqg).(nylp)—i_(ﬁvx)’l’b]: éawd/(ﬁ(n'vxy'p)a Oxy z=L

&Y P

:GJEdSEZ_ JOXdedY{(‘#z=O_¢Z=L)aw(’pz=L)

wheren (which is contained in thety plane represents the

outer unit normal to the bounda@W of W andV, is the

2D gradient operator. — (0= =1 )€
With this in mind and making use of the same notation

and assumptions as [7], we obtain a different expression

for Egs.(14) and(15) in that paper, where Green’s theorem where in going from the left- to the right-hand side we used

was inaccurately applied. For clarity, let us first separate théhe dielectric boundary conditioB;,—D,= o [and the fact

2
2
+e(Eyo-,
z=L

: ()
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that [,xd/ (,—o— ,—)=/+dS E] and also formed the &
3D Laplacian and employed E¢LO) in [7]. \

In fact, the left- and right-hand sides of E@) are the
correct forms for Eqs(14) and (15), respectively, in[7]. & S S B
After adding all the terms, the correct expression for zhe ! g
component of the forcgEq. (16) in [7]] should read

€
F,= fOxdedy{ P(h,=0) = P(z=1) = (=0— th2=1)
xap +fdd€E E,-1)? o —Edg-L
aw(wz:L) Oxy X y2( z=0 z:L) - -

5 FIG. 1. Longitudinal section along the confining cylinder show-
+J AXAY Py o=ty ) € _’ﬁ 4) ing the two particlesS; and S, and the wallsA and B responsible
Oxy z=0 ¥z=L 972 ) for the complete confinement. The plane d is midway between
z=L the particleS, and the wallB.

Although one can use the same argument a§7into
prove that the first two integrals in E¢4) are always posi- by electrolyte and also have the same uniform surface charge
tive, the third ongwhich is different from that obtained by densityo as the confining cylindefin this way the complete
Trizac and Raimbaulican in fact be negative and sometimes confinement is realized by a surface of cons@htTo com-
overcome the first two. Before we show how this can hapute thez component of the force on the colloig,, we
pen, let us mention another equivalent expressionFgr  follow the same procedure outlined [iii], only that instead
which can be obtained by recasting in a different manner thef choosing the surfac®, to integrate over in Eq(11) that
second integrand of Eq(13) in [7], namely, D-E),_, definesF, in [7], we choose the surfac®y, midway be-
—(D-E) e =—€(Eyjeg—E;—1)?>—2E,—¢- (D, —D,—0), tween the colloidS, and the wallB (see Fig. 1 Keeping in
and then following the same steps used in deriving@y.  mind the correction made in this Comment, the result ends
up identical to Eq.(5), with the only exception that all the

indicesz=L are replaced bg=d:
FZ:_ oxydxdy{P(wZ_L)_P(l[/z_o)—(l’//Z_L_wz_o) p y

aP € Fo=— | dxdy P(¢,—q)—P($hr=0) = (Yy—q— 5=
X_(l//z—o)}_f dXdy_(Ez:O_Ez:L)Z z Oxy 5’{ (l/fz—d) (lr/fz—o) (‘r/fz—d d/z—o)
t?lﬂ Oxy 2
xap( )} f dxdy- (E E,—q)2
+f dXdyf(Ez)gzL_f dXdy(lr/fz:L_'r/’z:O) Iy V2o Oxy X yz( =0 =
Oxy Oxy
072(/, + dXdYG(EZ)gzd_f dXdy(l/fz:d_d/ZZO)
X € — . (5) Oxy oxy
9z
z=0 2
Y
The reader can easily check that EgH.and(5) are equiva- Xe E) : ©®)
z=0

lent, by subtracting them from one another and then using
Eqg. (10) in [7], Green's theorem in 2D, and the dielectric
boundary condition to prove that the result is zero. It is easy to see that the last two integrals in E)

We can now propose a simple example in order to provexpproach zero as the separatidn Retween the walls is in-
that complete confinement does not always generate reputreased to infinity and the distancel2{d) between each
sive interactions. As before, we assume that the particles aggarticle and the adjacent wall is kept constant. Indeed, in this
immersed in an electrolyte of permittivity, confined by an  situation, ¢y becomes symmetric with respect to the plane
infinite and uniformly charged cylindrical surfagef arbi- =d (due to our choice for the shape of the colloidal pariicle
trary cross section while the medium outside the cylinder and thereforek,),_4—0, while atz=0 (infinitely far away
has a permittivitye’ and also contains an electrolytmost  from the particles and the wallthe problem of solving fors
general case The only requirement is that possesses mir- becomes essentially a 2D ofiedependent of) and there-
ror symmetry with respect to the plame-0. In our example fore ¢"¢/9z"—0 for anyn=1. At the same time, as argued
the particlesS; andS, are taken to be flat surfaces with the in [7], the first two integrals in Eq(6) are always positive
same surface charge density as the confining cylinder [the first integrand is positive due to the global convexity of
while the microions are able to equilibrate at all timéy  P(#)] and, moreover, reach some finite asymptotic values in
being in contact with a reservoir and possibly permeatinghis limiting case. Since both integrals contribute with a mi-
through the colloidal particlesThe wallsA andB that real- nus sign in Eq.(6), it becomes clear thaf,<<0 whenL
ize the complete confinement are surrounded on both sides:c andL —d is constant.
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Therefore, within the approximations of our example, weaction with the walls(or conceivably other particlegl0])
conclude that, for any fixed distancel2{d) between the that are responsible for the finite longitudinal confinement
colloidal particle and the adjacent wall, there is a finite,and break the translational symmetry of the confined space.
maximum separation between the walls 2 at which the  Although this type of calculation is not suitable to yield an
particles are in equiliboriumK,=0) and beyond which=,  estimate orL, it would nevertheless be of great interest if
becomes negative and remains solLaisicreases. Although this could be done through computer simulations.
this is in contradiction with the result obtained earlier by
Trizac and Raimbault7] that F, should always be positive It is a pleasure to acknowledge stimulating discussions
under complete confinement, we have shown that the contravith M. N. Tamashiro, C. Jeppesen, and P. Pincus. This
versy stems from an inaccuracy in their calculation. It iswork was supported by the DMR Program of the National
therefore possible that completely confined colloidal par-Science Foundation under Contract Nos. DMR99-72246 and
ticles do not always repel, mainly due to the stronger interNo. DMR96-32716.

[1] G.M. Kepler and S. Fraden, Phys. Rev. L&, 356 (1994). [9] J.E. Sader and D.Y.C. Chan, J. Colloid Interface 3tB 268

[2] J.C. Crocker and D.G. Grier, Phys. Rev. L&, 1897(1996. (1999; Langmuir 16, 324 (2000.

[3] M.D. Carbajal-Tinoco, F. Castro-Roman, and J.L. Arauz-Lara,[10] The finite longitudinal confinement is effectively transforming
Phys. Rev. E53, 3745(1996. the two-particle system into a system at finite concentration of

[4] A.E. Larsen and D.G. Grier, Natuteondon 385, 230(1997. colloidal particles. For a perturbative calculation at finite con-

[5] D.G. Grier, NaturglLondon 393 621(1998. centration, which also shows attraction between confined col-

[6] J.C. Crocker and D.G. Grier, Phys. Rev. L&8, 352(1994). loids, see, e.g., D. Goulding and J.P. Hansen, Europhys. Lett.

[7] E. Trizac and J.L. Raimbault, Phys. Rev6H 6530(1999. 46, 407 (1999; J.P. Hansen, D. Goulding, and R. van Roij, J.

[8] J.C. Neu, Phys. Rev. LetB2, 1072(1999. Phys. IV (France 10, Pr 5-27(2000.

013401-3



